A novel method for accurate one-dimensional protein structure prediction based on fragment matching
نویسندگان
چکیده
MOTIVATION The precise prediction of one-dimensional (1D) protein structure as represented by the protein secondary structure and 1D string of discrete state of dihedral angles (i.e. Shape Strings) is a prerequisite for the successful prediction of three-dimensional (3D) structure as well as protein-protein interaction. We have developed a novel 1D structure prediction method, called Frag1D, based on a straightforward fragment matching algorithm and demonstrated its success in the prediction of three sets of 1D structural alphabets, i.e. the classical three-state secondary structure, three- and eight-state Shape Strings. RESULTS By exploiting the vast protein sequence and protein structure data available, we have brought secondary-structure prediction closer to the expected theoretical limit. When tested by a leave-one-out cross validation on a non-redundant set of PDB cutting at 30% sequence identity containing 5860 protein chains, the overall per-residue accuracy for secondary-structure prediction, i.e. Q3 is 82.9%. The overall per-residue accuracy for three- and eight-state Shape Strings are 85.1 and 71.5%, respectively. We have also benchmarked our program with the latest version of PSIPRED for secondary structure prediction and our program predicted 0.3% better in Q3 when tested on 2241 chains with the same training set. For Shape Strings, we compared our method with a recently published method with the same dataset and definition as used by that method. Our program predicted at 2.2% better in accuracy for three-state Shape Strings. By quantitatively investigating the effect of data base size on 1D structure prediction we show that the accuracy increases by approximately 1% with every doubling of the database size.
منابع مشابه
Building a Better Fragment Library for De Novo Protein Structure Prediction
Fragment-based approaches are the current standard for de novo protein structure prediction. These approaches rely on accurate and reliable fragment libraries to generate good structural models. In this work, we describe a novel method for structure fragment library generation and its application in fragment-based de novo protein structure prediction. The importance of correct testing procedure...
متن کاملA Novel Spot-Enhancement Anisotropic Diffusion Method for the Improvement of Segmentation in Two-dimensional Gel Electrophoresis Images, Based on the Watershed Transform Algorithm
Introduction Two-dimensional gel electrophoresis (2DGE) is a powerful technique in proteomics for protein separation. In this technique, spot segmentation is an essential stage, which can be challenging due to problems such as overlapping spots, streaks, artifacts and noise. Watershed transform is one of the common methods for image segmentation. Nevertheless, in 2DGE image segmentation, the no...
متن کاملBioinformatics prediction and experimental validation of VH antibody fragment interacting with Neisseria meningitidis factor H binding protein
Objective(s): We previously conducted an in silico research on the interactions between the ribosome display-selected single chain variable fragment (scFv) and factor H binding protein (fHbp) of Neisseria meningitidis. We found that heavy chain variable (VH) fragment of this scFv had considerable affinity to fHbp. These results led us to evaluate the ability of this sm...
متن کاملA Novel Technique for Steganography Method Based on Improved Genetic Algorithm Optimization in Spatial Domain
This paper devotes itself to the study of secret message delivery using cover image and introduces a novel steganographic technique based on genetic algorithm to find a near-optimum structure for the pair-wise least-significant-bit (LSB) matching scheme. A survey of the related literatures shows that the LSB matching method developed by Mielikainen, employs a binary function to reduce the numbe...
متن کاملDe novo protein structure prediction by dynamic fragment assembly and conformational space annealing.
Ab initio protein structure prediction is a challenging problem that requires both an accurate energetic representation of a protein structure and an efficient conformational sampling method for successful protein modeling. In this article, we present an ab initio structure prediction method which combines a recently suggested novel way of fragment assembly, dynamic fragment assembly (DFA) and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bioinformatics
دوره 26 4 شماره
صفحات -
تاریخ انتشار 2010